5 research outputs found

    AUTONOMOUS SURFACE DETECTION AND TRACKING FOR FMCW SNOW RADAR USING FIELD PROGRAMMABLE GATE ARRAYS

    Get PDF
    Sea Ice in Polar Regions is typically covered with a layer of snow. The thermal insulation properties and high albedo of the snow cover insulates the sea ice beneath it, maintaining low temperatures and limiting ice melt, and thus affecting sea ice thickness and growth rates. Remote sensing of snow cover thickness plays a major role in understanding the mass balance of sea ice, inter-annual variability of snow depth, and other factors which directly impact climate change. Researchers at the Center for Remote Sensing of Ice Sheets (CReSIS) at University of Kansas have developed an ultra-wide band FMCW Snow Radar used to measure snow thickness and map internal layers of polar firn from low and high-altitude. This system has shown outstanding performance, but it has some limitations in terms of operational altitude and relies on the operator to make adjustments during surveys to capture radar echoes if the altitude changes significantly. In this thesis, an automated onboard real-time surface tracker for the snow radar is presented to detect snow surface elevation from the aircraft and track changes in the surface elevation. A common technique for an FMCW radar to have a long-range (high-altitude) capability relies on the system’s ability to delay the reference chirp signal used for de-chirping to maintain a relatively constant beat frequency. Currently, the radar uses an analog filter bank to condition the received IF signal over discrete altitude ranges and store the spectral power in each band utilizing different Nyquist zones. During airborne missions in Polar Regions with the radar, the operator has to manually switch the filter banks whenever there is a significant change in aircraft elevation. The work done in this thesis aims at eliminating the manual switching operation and providing the radar with surface detection, chirp delay, and a constant beat frequency feedback loop to enhance its long-range capability and ensure autonomous operation

    Liver clot after periodontal surgery: A rare case report

    No full text
    Due to the primary closure of the fragile tissues, large postoperative drainage is unexpected following a periodontal medical procedure. This case study elaborately illustrates the formation of a “liver coagulation” or “currant jam clot” following a periodontal fold surgical operation. Contamination, internal damage, and the presence of foreign particles such as bone splinters or bits of dental restorative dressing can all increase the risk of an incident happening
    corecore